Senin, 03 Oktober 2011

review 15


 DEVELOPING MATHEMATICS EDUCATION IN INDONESIA
By : Marsigit
Kerjasama antara lembaga pendidikan
dalam mencari model-model alternatif dalam referensi pengalaman pendidikan dari beberapa negara lain mungkin mendapatkan beberapa manfaat kesempatan, seperti:
1.      mendiskusikan dan meningkatkan pelaksanaan kurikulum yang mencakup pengembangan buku teks, bahan ajar, metodologi pengajaran, dan penilaian,
2.      memperkaya pengalaman matematika dan ilmu pengetahuan pendidik,
3.      meningkatkan kualitas pengajaran belajar dan mengembangkan laboratorium,
4.      memecahkan matematika dan ilmu pengetahuan masalah belajar mengajar di sekolah,
5.      merekomendasikan cara-cara untuk meningkatkan matematika dan pendidikan ilmu pengetahuan, dan
6.      memenuhi harapan masyarakat dari apa yang disebut praktik yang baik dari matematika dan pendidikan sains.
Untuk kegiatan tukar pengalaman antara lembaga pendidikan mungkin bervariasi seperti:
1.      melakukan seminar dan lokakarya,
2.      melakukan kegiatan penelitian bersama,
3.      penerbitan dan penyebarluasan hasil bertukar pengalaman dan atau jurnal,
4.      membangun jaringan diantara lembaga atau negara.
Titik baik dari pendidikan Jepang yang bisa menjadi referensi meliputi:
1.      rata-rata kemampuan guru dan kualitas kelas adalah relatif tinggi,
2.      desain kelas yang tepat, mengajar,
3.      lingkungan pendidikan, kondisi pendidikan dan sebagainya adalah homogen untuk seluruh negara,
4.      guru rajin,
5.      prinsip kesetaraan,
6.      guru rasa tanggung jawab yang kuat,
7.      pengobatan guru relatif baik, dan
8.      guru sekolah umum harus pindah ke sekolah lain dalam beberapa tahun.

review 14


Pembudayaan Matematika di Sekolah Untuk Mencapai Keunggulan Bangsa
By : Marsigit
Civilize the nation's math to get the benefits can be gained through innovation in school mathematics learning paths. Various activities undertaken in the various activities of the author PLPG Mathematics, mathematics seminars and workshops, obtained perception that the innovation of learning mathematics teacher should be able to answer the challenge as follows:
1.      How can the PBM to promote mathematics that emphasizes the process
2.      How to develop cooperative learning in mathematics PBM
3.      How to make group learning in mathematics PBM
4.      How to make studying math outside the classroom: an alternative.
5.      How to develop learning mathematics through games
6.      Develop a variety of mathematical learning model of learning
7.      Make use of concrete objects in mathematics PBM
8.      Contextual learning in mathematics PBM
9.      Utilizing the natural surroundings in the PBM mathematics
10.  Learning mathematics through team teaching
11.  Encourage the initiative of students in mathematics PBM
12.  Promote the role of students in mathematics PBM
13.  Develop a variety of learning resources in mathematics PBM
14.  Use of visual aids in mathematics PBM
15.  Various methods of mathematical PBM
16.  Learning mathematics through a variety of experimental mathematics
17.   Planning is an innovative math learning
18.  Promote methods of discussion in the PBM mathematics
19.  Monitoring activities by the teachers in learning mathematics
20.  Development of lesson study in mathematics PBM
21.  Enabling students in mathematics PBM
22.  Encourage students to make presentations PBM results in mathematics
23.  Encourage independence of learning mathematics
24.  Promote the role of teacher as facilitator in math PBM
25.  Develop mathematical activity in the PBM asesment
26.  The activities in PBM mathematics
27.  Enabling students in group activities
28.  Activities apperception in learning mathematics
29.  Revitalizing the role of teachers in learning mathematics
30.  Variation of interaction and communication in mathematics PBM
31.  Encourage students' creativity in mathematics PBM
32.  Develop a portfolio of students' activities in mathematics PBM
33.  Encourage students to be able to construct mathematical concepts independently
34.  Developing realistic mathematics for students
35.  Developing reflection activities to Student in mathematics PBM
36.  Learning mathematics with an informal approach.
37.  Develop a classroom observation instrument in mathematics PBM
38.  The efforts of teachers to communicate their ideas or the learning of mathematics in mathematics PBM
39.  How to encourage teachers responsible for each student (all) in mathematics learning: a concept is Education for All.
40.  How to realize the needs of students studying mathematics as
41.  How to encourage students to be able to deduce its own findings of mathematics.
42.  Revitalization paradigm school mathematics / The nature of school mathematics
43.  The nature of students' learning of mathematics
44.  Promote the teaching learning process student-centered math
45.  Develop math worksheets for PBM.

review 13


REVITALISASI PENDIDIKAN MATEMATIKA
By : Marsigit
Ebbutt and Straker (1995: 10-63), provides guidelines for the revitalization of mathematics education in the form of basic assumptions and their implications for learning mathematics as follows:
1.      Mathematics is the search activity patterns and relationships.
The implication of this view of learning are:
-          Gave students the opportunity to conduct discovery and investigation to determine patterns of relationships.
-          Provide an opportunity for students to perform experiments premises in various ways
-           Encourage students to discover the existence of the order, difference, comparison, grouping, etc..
-          Encourage students to draw general conclusions.
-          Helps students understand and discover the relationship between understanding one another.
2.      Mathematics is the creativity that requires imagination, intuition and invention.
The implication of this view of learning are:
-          Encourage the initiative and provide an opportunity to think differently.
-          Encourage curiosity, the desire to ask, denied the ability and the ability estimates.
-          Appreciate the unexpected discovery that as a matter of useful as an error.
-          Encourage students to discover the structure and design of mathematics.
-          Encourage students to appreciate the discovery of other students.
-          Encourage students to think reflexively.
-          Do not recommend the use of a particular method.
3.      Mathematics is problem solving activities
The implication of this view of learning are:
-          Provide an environment that stimulates learning math mathematical problem.
-          Helps students solve mathematical problem using his own way.
-          Help students find the information needed to solve mathematical problems.
-          Encourage students to think logically, consistently, systematically and develop a system of documentation / records.
-          Develop the ability and skills to solve problems.
-          Helps students know how and when to use various visual aids / media such as mathematics education: a compass, calculator, etc.
4.      Mathematics is a means of communicating
The implication of this view of learning are:
-          Encourage students to recognize the nature of mathematics.
-          Encourage students to make an example the nature of mathematics.
-          Encourage students to explain the nature of mathematics.
-          Encourage students to give reasons for the necessity of mathematical activities.
-          Encourage students to discuss mathematical problems.
-          Encourage students to read and write mathematics.
-          Respect the mother tongue of students in discussing mathematics.
5.      Mathematics Teaching Materials include:
-          Facts (facts): - information;-name;-term; convention
-          Understanding (concepts): building a sense of structure; role of understanding the structure; conservation, set, relationship patterns, sequences, models, operations, algorithms
-          Skills algorithms
-          Reasoning skills: understanding ; to think logically; understanding noodles negative example; think deduction; think systematically; think consistent; draw conclusions; determine the method; make excuses; determine strategy.
-          Problem-solving Skills
-          Skills Investigation (Investigation): ask questions and determine how to obtain it; create and test hypotheses; determine the appropriate information and provide an explanation why such information is needed and how to get it; collecting, collating and processing information systematically; grouping or classifying criterion; sort and compare; try another way; recognize patterns and relationships; conclude